理学 >>> 数学 >>> 函数论 >>> 实变函数论 单复变函数论 多复变函数论 函数逼近论 调和分析 复流形 特殊函数论 函数论其他学科
搜索结果: 1-9 共查到函数论 mean相关记录9条 . 查询时间(0.421 秒)
On a smooth compact manifold of dimensions three and four with totally non-umbilic boundary,imposing non-negativity assumptions on curvatures of the background metric, we establish that there exists a...
We study stationary quantum fluctuations around a mean field limit in trapped, dilute atomic gases of repulsively interacting bosons at zero temperature. Our goal is to describe quantum-mechanically t...
This paper is in part a summary of our earlier work [17, 18, 19], and in part an announcement introducing a re nement of the equations for the pair excitation function used in our previous work with...
Let be a bounded piecewise C 2 simply-connected domain. In thisarticle, we give necessary and sucient conditions for the existence ofmaximizer ofJ8() = log Zedx!116Zj 5 j2dx for  2 H10(). We pro...
We construct solutions of the constraint equation with non constant mean curvature on an asymptotically hyperbolic manifold by the conformal method. Our approach consists in decreasing a certain expo...
We establish the Beurling-Hörmander theorem for the Fourier transform connected with the spherical mean operator. Applying this result, we prove the Gelfand-Shilov and Cowling-Price type theorems...
Korovkin-type theorems are established, and consequently mean ergodic theorems are obtained.
The main purpose of this paper is to study the mean value properties of the character sums over the interval $\left[1, \frac{p}{8}\right)$ by using the mean value theorems of the Dirichlet L-functions...
The main purpose of this paper is to use the generalized Bernoulli numbers, Gauss sums and the mean value theorems of Dirichlet $L$-functions to study the asymptotic property of the difference between...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...